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ABSTRACT: We derive an explicit expression for the
resonance frequency shift for a subwavelength plasmonic
nanocavity upon the adsorption or trapping of a single
nanoparticle using rigorous perturbation theory. It reveals a
simple linear dependence of the resonance frequency shift on
the product of the local field intensity of a resonance mode, the
material dispersion factor dωi/dε of the nanocavity, and the
polarizability of the nanoparticle. To verify this linear relation,
we numerically simulate the nanoparticle-induced resonance
shifts for subwavelength ellipsoids, rods, rod pairs, and split rings
with different sizes and materials, and a very good agreement is found between the theory and the numerical results. Moreover,
we discuss this approach from the energy perspective and find that the linear relation can be understood in the context of optical
trapping. This work not only reveals the underlining physics of near-field couplings in plasmonic nanocavities but also provides
theoretical guidelines for the design of ultrasensitive nanosensors.
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The resonance frequency of a plasmonic nanocavity can be
altered by a minute modification of its optical near-field,

caused for example by the optical trapping of nanoparticles
(NPs)1 or the absorption of molecules.2,3 This high spectral
sensitivity makes plasmonic nanocavities a very attractive
platform for building active optical nanodevices, such as
switches,4 modulators,5−7 tunable antennas,8 and nanosensors.9

To date, many experimental works have dealt with the
resonance frequency shift phenomenon of different plasmonic
nanostructures, including nanoprisms,10 nanorods,2 nano-
cubes,11,12 nanoshells,13,14 and nanobranches,15 with the goal
of finding the best plasmonic nanosensor and, eventually,
achieving integrated high-throughput sensing devices16,17 with
single-molecule sensitivity.2,9 Meanwhile, theoretical endeavors
have also been reported on the sensitivity and the limit of
detection for plasmonic biosensors.18−20 However, to date,
there is still lack of a comprehensive yet simple general theory
that can address fundamental questions such as what
determines the sensitivity of a plasmonic nanosensor and
which structure gives the best sensitivity (largest resonance
frequency shift) upon the presence of a single NP or molecule.
A general theory that can provide an explicit link of the
sensitivity to material and geometrical parameters is therefore
required for understanding, analyzing, and further developing
plasmonic nanostructure-based active devices, especially
sensors.
In order to interpret the perturbation-induced resonance

shift of plasmonic nanostructures quantitatively, one often uses
the theory of dielectric microcavity systems, in which the

resonance frequency shift Δωi can be explicitly expressed as the
shift of the cavity eigenmode i:21−24
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Equation 1 explains the linear relation between resonance
frequency shift and the local field intensity. However, strictly
speaking, it is only applicable to structures made of non-
dispersive materials. For nanostructures made of dispersive
materials, particularly plasmonic nanocavities, the denominator
∫ dr ε(r)|E(r)|2 in eq 1 can vanish,25 which will lead to an
unphysically large value for the resonance frequency.26

In this work, we develop a general theory for the resonance
shift of dispersive plasmonic nanocavities using the eignenmode
method, which we recently established based on Green’s tensor
technique.27−29 Previously, it was shown that the scattered
fields of a deep subwavelength structure can be decomposed
into a series of eigenmodes, which are associated with dielectric
constant eigenvalues.27−30 In this work, we will utilize this
eigenmode method and build a rigorous perturbation theory to
derive an explicit expression for the NP-induced resonance
frequency shifts of plasmonic nanocavities.
The paper is organized as follows. First, we derive the general

expression for the resonance frequency shift of a nanocavity
using the eigenmode technique. Then, we verify the validity of
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this result on various types of plasmonic nanocavities with
numerical experiments and discuss the influences of the local
field intensity, the material dispersion, and the cavity quality
factor on the resonance shift. Finally, we investigate the
resonance frequency shift in the context of optical trapping,
which provides a simple illustration of the resonance shift in the
perspective of energy conservation.

■ PERTURBATION THEORY FOR THE RESONANCE
MODES OF PLASMONIC NANOCAVITIES

The system under study is shown in Figure 1a. It consists of a
plasmonic nanocavity and an NP. When the NP moves into the

near-field zone of the nanocavity, the resonance frequency ωres
will shift by Δωres due to near-field coupling. In this section, we
derive a simple expression for Δωres using perturbation theory
with the help of Green’s tensor technique.
Eigenmodes of Nanocavities. Localized plasmon reso-

nances of a plasmonic nanocavity can be viewed as the
eigenmodes of the structure under the Bergman spectral
respresentation.27 We start from the Lippmann−Schwinger
equation, which describes the scattering problem for electro-
magnetic fields:31
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where Δε = εca − εbg is the permittivity contrast between the
scatter (nanocavity in this work) and the background medium,
Eext is the external field, G0 is the free-space Green’s tensor, and
k0 is the wavenumber in the background medium. Let us define
the material parameter, s = 1/Δε, inner product,
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cavity (3)

and the linear operator
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The homogeneous part of eq 2 (without external fields)
becomes ĜE = sE. When the cavity is much smaller than the
wavelength, the quasi-static approximation can be used, and eq
2 will own a complete set of orthonormal eigenmodes {Ei, i = 1,
2, ...}, which fulfill the relation ⟨Ei|Ej⟩ = δij with real
eigenvalues{si, i = 1, 2, ...}, which are located between −1
and 0.27 The scattered field can be written as an expansion of
the eigenmodes:
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Eigenmode i can be resonantly excited when the denominator
in eq 6 approaches zero.
The singularities in eq 6 determine the resonance conditions

for the nanocavity. Since si are located between −1 and 0,
reaching the resonance condition requires a negative
permittivity, which can be met by noble metals in the optical
spectral range thanks to the optical response of the free
electrons. Under resonance conditions, the free electrons
oscillate collectively and produce the localized plasmon
resonance. Because of the ohm losses of metal, s/(s − si) has
a Lorentzian function-like shape, and this phenomenon has
been widely observed experimentally.32

Perturbation Theory. When a NP or protein molecule
enters the near-field zone of a plasmonic nanocavity, the
Lippmann−Schwinger equation of the perturbed system
becomes
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Here, εca and εNP are the permittivity of the nanocavity and
perturbing NP, respectively. Assuming that the NP is much
smaller than the nanocavity, the last term in eq 7 can be treated
as a perturbation, and the eigenvalues and eigenmodes of the
perturbed system become si′ = si + Δsi, and Ei′ = Ei + ΔEi. By
applying a perturbation procedure, we obtain a simple
expression for the first-order correction of the eigenvalue si
(see the Supporting Information):
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Knowing that the polarizability of a spherical NP is αNP =
4πrNP

3[(εNP − εbg)/(εNP + 2εbg)] and finite difference of s(ω)
is Δsi = −[1/(εca − εbg)

2](dεca/dωi), eq 8 can then be written
as

ω ω ε αΔ = − | |E r(d /d ) ( )i i ica NP NP
2

(9)

where rNP is the location of the perturbing NP or adsorbed
molecule.
The mode profile Ei(r) can be obtained using the local

electric field on the resonance frequency ωi, which can be
calculated with commonly used numerical simulation tools,
such as finite-differences time-domain,33 finite-elements
method,34 or Green’s tensor technique.31 Equation 6 shows
that ai becomes very large at the vicinity of the resonance
condition for mode Ei, and therefore

≈ aE r E r( ) ( )i i (10)

Inserting eq 10 into ⟨Ei|Ei⟩ = 1, we obtain ai = (∫ cavitydr|
E(r)|2)1/2|ωi, and Ei(r) = E(rNP)/(∫ cavitydr|E(r)|

2)1/2. Equation 9
then becomes
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Figure 1. Sketch of the resonance shift phenomenon for a plasmonic
nanocavity induced by the perturbation from a single NP.
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Equation 11 provides a general relation for the resonance
frequency shifts for subwavelength cavities made of dispersive
materials. It is universal, applicable to any type of dispersive
nanocavities, irrespective of their size, shape, and material.

■ NUMERICAL VERIFICATION
Universality of the Resonance Shift Formula. To verify

eq 11, we numerically simulated the resonance frequency shifts
of nanocavities induced by an NP. In the simulation,
nanocavities with different shapes, namely ellipsoids,35 nano-
rods,2 antennas (i.e., rod pair),1 and split rings36 made of
different materials (Ag and Au) were coupled with a Si NP (5
nm in diameter) placed at different locations in the near-field
zone of the nanocavities. The scattered fields were solved using
Green’s tensor technique by discretizing the nanocavities into 2
nm × 2 nm × 2 nm cubes. The simulated results are plotted in
Figure 2a. The resonance behaviors of those nanostructures

exhibit a great diversity, depending on the shape and material.
No clear relation between the resonance shift and the shape,
material, or resonance frequency can be observed.
To make a quantitative comparison between the numerical

results and the theory, namely, eq 11, we extracted the
resonance frequencies of the nanocavities with and without the
Si NP by fitting their scattering spectra with a Lorentzian
function and plotted the resonance shifts Δωres as a function of
− αNP(dωi/dεca)(|E(rNP)|

2/∫ cavitydr|E(r)|
2 for all nanocavities,

as shown in Figure 2b. The plot includes 80 data points from
16 different nanocavities (four different shapes, two different
sizes for each shape, and two different materials) perturbed by a
Si NP at different locations for each nanocavity. The linear
fitting result shows a slope of 1.07, with the correlation of
0.9927. This good agreement with eq 11 proves that the theory
is universally applicable to subwavelength plasmonic nano-
cavities, independent of the shape, size, or material of the cavity.

Role of |E(rNP)|2. An important property of eq 11 is that the
resonance shift Δωres is linearly dependent on the local field
intensity |E(rNP)|,

2 the key parameter for surface-enhanced
spectroscopy.
To unveil the role of |E(rNP)|

2, plasmonic nanoantennas with
different arm lengths were used as model systems. We
calculated the resonant frequencies of plasmonic nanoantennas
perturbed by a Si NP at different locations rNP (i.e., with
different local field intensities) and plotted in Figure 3a Δωres as

a function of |E(rNP)|
2 for each antenna. Since dωi/dεca and

∫ cavitydr|E(r)|
2 are constant for the same nanoantenna, Δωres

and |E(rNP)|
2 should be linearly dependent. Linear relations are

indeed observed in Figure 3a, and fitting results reveal strong
linear correlations: the correlation coefficient is 0.9992, 0.9995,
0.9997, and 0.9993 for the four plasmonic nanoantennas. In the
plot, the slopes of the Δωres vs |E(rNP)|

2 curves are different
because dωi/dεca and ∫ cavitydr|E(r)|

2 are different for nano-
antennas with different arm lengths.

Figure 2. (a) Resonance frequency shift of plasmonic nanocavities
induced by a single NP. (b) Resonance shift as a functitn of αNP(dωi/
dε)|Ei(rNP)|

2 for different nanocavities. Simulation results for eight
different types of plasmonic nanocavity structures are shown: namely,
ellipsoid (40 nm long axis, 14 nm short axes), rod (10 nm × 10 nm
cross-section, 26 nm long), nanoantenna (28 nm × 10 nm × 10 nm
arm size, 10 nm gap), and split ring (10 nm × 10 nm wire cross-
section, 32 nm × 30 nm outer dimension of the ring, 10 nm gap)
made of Ag or Au. For each structure, we calculated the resonance
shifts for five different NP locations rNP.

Figure 3. (a) Resonance shift Δωres as a function of the local field
intensity |E(rNP)|

2 for plasmonic nanoantennas with different arm
lengths (i.e., 24, 28, 32, and 36 nm). The dashed lines are the linear
fitting results. (b) Resonance shift for plasmonic nanoantennas as a
function of the material dispersion factor dωi/dεca. In the simulation,
we kept the arm length of the nanoantenna constant (l = 32 nm) while
varying the dispersion relation ε(ω) and the location rNP of the NP, as
sketched in the inset. The dashed lines are the linear fitting results. In
(a) and (b), the gap size and cross-section of the antennas is 10 nm
and 10 nm × 10 nm, respectively.
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Role of the Material Dispersion Factor dωi/dεca. The
key difference between eq 11 for dispersive nanocavities and eq
1 for dielectric (nondispersive) microcavities is dωi/dεca, a
material dispersion-related factor. To verify the dependence on
dωi/dεca, we need to (1) fix the value of |E(rNP)|

2/∫ cavitydr|
E(r)|2 in eq 11 (i.e., |Ei(r)|

2 in eq 9), (2) change dωi/dεca, and
then investigate the correlation between dωi/dεca and Δωres.
To fix |E(rNP)|

2/∫ cavitydr|E(r)|
2, nanocavities with the same

geometry were used. Since under the quasistatic approximation
the resonance modes are solely determined by the geometry of
a nanocavity, all the nanocavities share the same field
distribution at the resonance frequency (i.e., same |Ei(r)|

2).
To vary the factor dωi/dεca, in this work we tune the
permittivity of the nanocavity, which we describe with the
Drude model: ε(ω) = ε∞ − ωp

2/ω(ω = iγ), with ε∞ the high-
frequency permittivity, ωp the plasma frequency, and γ the
damping term.
In detail, we calculated the resonance shift Δωres for the

antennas made of Drude metals with different ε∞ (i.e., 3, 5, 7,
and 9), and plotted in Figure 3b Δωres as a function of dωi/
dεca. Strong linear correlation was found. The correlation
coefficients for the four different perturbation locations rNP are
0.9999, 0.9997, 1.0000, and 0.9907. These results directly
demonstrate the importance of material dispersion in the
response of plasmonic nanosensors and that it must be carefully
taken into account to optimize them.
Role of Integral of the Eletric Field Intensity. The

integral term ∫ cavitydr|E(r)|
2 in eq 11 comes from the coefficient

ai in eq 5, which describes the excitation strength of the
resonant mode |Ei⟩. Equation 6 shows that ai is the product of
two independent terms, the material-determined factor s/(s −
si) and the integral factor ⟨Eext|Ei⟩. Term s/(s − si) is decided by
the material losses of the nanocavity and reaches its maximum
value Δεi/ε″ under the resonance condition. The term ⟨Eext|Ei⟩
describes the degree of overlap between the excitation field Eext
and the eigenmode Ei. When a plane wave is used to excite the
system, this term is proportional to the dipole moment of the
nanocavity.27 It is worth noting that the term ⟨Eext|Ei⟩ scales
with V1/2, since Ei is scaled with V1/2 (assuming that ⟨Ei|Ei⟩ is
normalized). Therefore, the resonance frequency shifts are also
proportional to V−1 (the smaller the cavity, the larger the
resonance frequency shift).

■ NANOPARTICLE-INDUCED PLASMON
RESONANCE SHIFT IN THE CONTEXT OF OPTICAL
TRAPPING

The resonance frequency shift of a nanocavity upon
perturbation by a nano-object is also associated with the
optical forces and the change of energy in the system. It is
therefore interesting to discuss eq 11 by considering the links
between the resonance frequency, the optical forces, and the
energy stored in the system. In this section, we will derive eq 9
from an energy perspective, then discuss the relation between
resonance shift and optical trapping potential, and, finally,
illustrate this relation for plasmonic antennas.
Resonance Shift vs Electric Field Energy. We have

shown in the previous section that under the quasistatic
approximation a nanocavity owns a complete set of
orthornormal eigenmodes. Let us consider a single photon of
the resonance mode i for a plasmonic nanocavity. When an NP
enters its near-field zone, the NP will be polarized by the
electric field. Under the first order of perturbation, the energy
of the system will be changed by

δ α= − · * = − | |U P E r E r
1
2

( )
1
2

( )i i iNP NP NP
2

(12)

Here, P, α, and rNP are the dipole moment, polarizability, and
position of the NP, respectively. When α is positive, δU will be
negative and trapping forces will be induced.
For a nanocavity made of dispersive material, the energy of

the photon of mode i can be written as the sum of the field
energy Ucavity stored in the metal cavity and that stored in the
surrounding dielectric background, Ubg:

25,37
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In eq 13, 1/2∫ cavity∂(ωε)/∂ω|E|
2 dr is used instead of ∫ cavitydr|

E(r)|2 because of the dispersion of the metal.37 When the
resonance frequency ωi shifts by δω, the energy of the system
will be changed by (see Supporting Information)

δ δω
ε
ω
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U
1
2 i

ca
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Comparing eq 12 with eq 14, we obtain Δωi = −(dωi/dεca)αNP|
Ei(rNP)|

2, which exactly corresponds to what was derived in the
previous section using the rigorous perturbation theory.
From the above discussion, we learn that the dispersion term

dωi/dεca originates from the expression of electric field energy
in dispersive materials (dωi/dεca)|E|

2, which is different from
the case of dielectric materials: ε|E|2.
It is worth mentioning that, using the above approach, eqs 9

and 11 can be easily extended to the case of a thin adsorption
layer around the cavity (entirely coated or partially coated), the
most relevant case for biosensing. For a thin dielectric adsorbed
layer with permittivity εpert, eq 12 becomes δUi =
−1/2∫ pertdr(εpert − εbg)|Ei(r)|

2, and we have the resonance shift

∫δω ω ε ε ε= − − | |r E r(d /d ) d ( ) ( )i i ica
pert

pert bg
2

(15)

Optical Potential vs Resonance Shift. The above
discussion unveils the relation between resonance frequency
shift Δωres and the system’s energy change, δU, which is
directly linked to optical forces.
For a small NP, the optical forces are F(rNP) = 1/2α∇|

E(rNP)|
2, and the trapping potential can then be defined as

∫ α= − = | |
∞

U r F r r E r( ) ( ) d
1
2

( )
r

trap NP NP
2NP

(16)

Comparing eq 16 with eq 11, we have

ωΔ ∝ U r( )res trap NP (17)

This linear relation between the optical trapping potential and
the associated resonance shift has indeed been observed in
previously reported optical trapping experiments with sub-
wavelength optical antennas.1 In that work, successive
resonance shifts with different magnitudes were observed
when two Au NPs were trapped at two different locations (e.g.,
the nanogap and the extremity of the plasmonic nanoantenna),
corresponding to two different trapping potentials (see Figure
2b in ref 1).
To illustrate the optical trapping-induced resonance shift

described by eq 16, we numerically simulated with Green’s
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tensor technique a plasmonic nanoantenna with a 25 nm gap
coupled to a 10 nm Au NP. In detail, first, the field distribution
of the antenna without NP was simulated, as shown in Figure
4a. Electric fields are highly enhanced and are homogeneous
inside the nanogap; at the edge of the nanogap, the field
intensity varies rapidly and drops to half of its maximum in just
a few nanometers. Using this field distribution, trapping forces
F and trapping potential Utrap along the axis crossing the
antenna center were calculated and plotted in Figure 4b. To
calculate the resonance shift caused by the NP, we placed the
NP at different locations along the y-axis (i.e., the central axis
along the nanogap), calculated the resonance spectra of the
coupled system, and plotted in Figure 4c the resonance
frequency as a function of the location of the NP. The profiles
of the Utrap vs rNP curve and the Δωres vs rNP curve fit to each
other very well, providing a direct support for the linear relation
between the local field enhancement and the resonance shift in
eq 17.
There are slight discrepancies between the two curves in

Figure 4b. They are caused by the two approximations used for
deriving eq 17. First, only the first-order correction of the
perturbation theory is implemented. Second, it is assumed that
the field in the NP is homogeneous, whereas, in reality, the field
generated by the nanoantenna can vary substantially over a 10
nm NP, particularly when it is located at the boundary of the
gap.
Strategy for Designing Ultrasensitive Plasmonic

Sensors. The universal relation that we have derived for the
resonance shift Δωres provides general guidelines for designing
ultrasenstive plasmonic sensors. Equations 9 and 11 indicate
that the sensitivity of a plasmonic sensor, namely, Δωres, to an
external perturbation is determined by two factors, the
dispersion factor, dωi/dεca, and the local electric field intensity
distribution of the eigenmode, |Ei(rNP)|

2. In the following
section, we discuss these two factors in details.
Let us exam the dispersion factor first. In the previous

section, it has been pointed out that, for the same geometry,
|Ei(rNP)|

2 stays constant, and the resonance shift is solely
determined by the dispersion of the material. Consider a
plasmonic nanostructure made of a Drude metal, ε(ω) = ε∞ −
ωp

2/ω(ω + iγ), where ωp is the plasma frequency and γ is the
damping constant. For simplicity, we assume γ = 0. If its
resonance modes are associated with the eigenvalues si = 1/(εi
− 1), we have ωi = [(ωp

2/(ε∞ − εp)]
1/2, dωi/dεm =

1/2ωp(ε∞ −

εp)
−3/2, and Δωres increases monotonically with the plasma

frequency. Therefore, a higher plasma frequency ωp will lead to
a larger resonance shift for the same structure.
Equally important is the local electric field of the resonance

mode |Ei(r)|, which is solely decided by the geometry. In eq 9,
it is evident that to achieve high sensitivity one needs to
generate “hot spots” with a large local electric field intensity
using special features such as nanometric corrugations, sharp
corners, or narrow gaps.1,9

In practice, it is challenging to engineer the sensitivity of a
plasmonic nanocavity sensor in quantitative fashion because the
local field intensity at a “hot spot” is extremely sensitive to local
geometical features. The authors have demonstrated in both
theory and experiment that even nanometer corrugations can
vary the local electric field intensity significantly.38,39 Today,
this issue can be partially addressed using newly developed
numerical simulation techniques38 and nanofabrication techni-
ques, e.g., the helium ion microscope technique, which is
capable of shaping nanostructures with a precision better than 5
nm.40

Another important property of |Ei(r)| is that it is inversely
proportional to the volume of the plasmonic nanosensor V.
Therefore, in order to improve the sensitivity, one needs to
decrease the size of the sensor. Recent works have shown that,
with new techniques, one can measure the resonance of Au
particles as small as 5 nm,41 much smaller than the size of
current sensing devices. This opens up new possibilities for
ultrasensitive plasmonic sensing devices. It is worth mentioning
that a smaller volume will make the nanocavity more sensitive
to the environmental fluctuations and consequently bring a
higher noise level. This factor also needs to be taken into
account in order to achieve the optimal limit-of-detection in
practice.2

■ SUMMARY

In this work, we have developed a rigorous perturbation theory
and derived a simple explicit expression for the NP-induced
resonance frequency shifts of plasmonic nanocavities. We found
that the resonance shifts are not only dependent on the local
field intensity of the resonance modes, a well-known
phenomenon in conventional dielectric microcavity-based
sensors, but also proportional to dωi/dεca, a material
dispersion-determined factor. Importantly, the relation is
universal, applicable to all types of subwavelength nanocavities

Figure 4. Relation between optical trapping forces, trapping potential, and associated resonance frequency shifts for a plasmonic nanoantenna (60
nm × 40 nm × 40 nm arm, 25 nm gap). (a) Local field intensity map for a plasmonic nanoantenna. (b) Optical trapping potential, Utrap, and optical
forces, F, of a Au NP (10 nm in diameter) along the dashed line in (a). (c) Optical trapping potential Utrap and trapping-induced resonance
frequency shift Δωres of the nanoantenna along the dashed line in (a).
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made of dispersive materials. We verified this universal relation
by numerically simulating 80 different cases with various
nanocavity shapes, sizes, and materials. Moreover, we
investigated the resonance shift in the context of energy and
discussed the relation between the resonance shifts and optical
forces. This result not only leads to a better understanding of
the resonance shift for plasmonic nanocavities upon changes of
their local environment but also provides general guidelines for
analyzing and further developing efficient active plasmonic
nanodevices.
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